Files
baffle-hub/app/controllers/analytics_controller.rb

548 lines
22 KiB
Ruby

# frozen_string_literal: true
# AnalyticsController - Overview dashboard with statistics and charts
class AnalyticsController < ApplicationController
# All actions require authentication
def index
authorize :analytics, :index?
# Time period selector (default: last 24 hours)
@time_period = params[:period]&.to_sym || :day
@start_time = calculate_start_time(@time_period)
# Cache TTL based on time period
cache_ttl = case @time_period
when :hour then 5.minutes
when :day then 1.hour
when :week then 6.hours
when :month then 12.hours
else 1.hour
end
# Cache key includes period and start_time (hour-aligned for consistency)
cache_key_base = "analytics/#{@time_period}/#{@start_time.to_i}"
# Core statistics - cached (uses DuckDB if available)
@total_events = Rails.cache.fetch("#{cache_key_base}/total_events", expires_in: cache_ttl) do
with_duckdb_fallback { EventDdb.count_since(@start_time) } ||
Event.where("timestamp >= ?", @start_time).count
end
@total_rules = Rails.cache.fetch("analytics/total_rules", expires_in: 5.minutes) do
Rule.enabled.count
end
@network_ranges_with_events = Rails.cache.fetch("analytics/network_ranges_with_events", expires_in: 5.minutes) do
NetworkRange.with_events.count
end
@total_network_ranges = Rails.cache.fetch("analytics/total_network_ranges", expires_in: 5.minutes) do
NetworkRange.count
end
# Event breakdown by action - cached (uses DuckDB if available)
@event_breakdown = Rails.cache.fetch("#{cache_key_base}/event_breakdown", expires_in: cache_ttl) do
with_duckdb_fallback { EventDdb.breakdown_by_action(@start_time) } ||
Event.where("timestamp >= ?", @start_time)
.group(:waf_action)
.count
end
# Top countries by event count - cached (uses DuckDB if available)
@top_countries = Rails.cache.fetch("#{cache_key_base}/top_countries", expires_in: cache_ttl) do
with_duckdb_fallback { EventDdb.top_countries(@start_time, 10) } ||
Event.where("timestamp >= ? AND country IS NOT NULL", @start_time)
.group(:country)
.count
.sort_by { |_, count| -count }
.first(10)
end
# Top blocked IPs - cached (uses DuckDB if available)
@top_blocked_ips = Rails.cache.fetch("#{cache_key_base}/top_blocked_ips", expires_in: cache_ttl) do
with_duckdb_fallback { EventDdb.top_blocked_ips(@start_time, 10) } ||
Event.where("timestamp >= ?", @start_time)
.where(waf_action: 0) # deny action in enum
.group(:ip_address)
.count
.sort_by { |_, count| -count }
.first(10)
end
# Network range intelligence breakdown - cached
@network_intelligence = Rails.cache.fetch("analytics/network_intelligence", expires_in: 10.minutes) do
{
datacenter_ranges: NetworkRange.datacenter.count,
vpn_ranges: NetworkRange.vpn.count,
proxy_ranges: NetworkRange.proxy.count,
total_ranges: NetworkRange.count
}
end
# Recent activity - minimal cache for freshness
@recent_events = Rails.cache.fetch("analytics/recent_events", expires_in: 1.minute) do
Event.recent.limit(10).to_a
end
@recent_rules = Rails.cache.fetch("analytics/recent_rules", expires_in: 5.minutes) do
Rule.order(created_at: :desc).limit(5).to_a
end
# System health indicators - cached
@system_health = Rails.cache.fetch("#{cache_key_base}/system_health", expires_in: cache_ttl) do
{
total_users: User.count,
active_rules: Rule.enabled.count,
disabled_rules: Rule.where(enabled: false).count,
recent_errors: Event.where("timestamp >= ? AND waf_action = ?", @start_time, 0).count # 0 = deny
}
end
# Job queue statistics - short cache for near real-time
@job_statistics = Rails.cache.fetch("analytics/job_statistics", expires_in: 30.seconds) do
calculate_job_statistics
end
# Prepare data for charts - split caching for current vs historical data
@chart_data = prepare_chart_data_with_split_cache(cache_key_base, cache_ttl)
respond_to do |format|
format.html
format.turbo_stream
end
end
def networks
authorize :analytics, :index?
# Time period selector (default: last 24 hours)
@time_period = params[:period]&.to_sym || :day
@start_time = calculate_start_time(@time_period)
# Top networks by request volume - use DuckDB if available
network_stats = with_duckdb_fallback { EventDdb.top_networks(@start_time, 50) }
if network_stats
# DuckDB path: array format [network_range_id, event_count, unique_ips]
network_ids = network_stats.map { |row| row[0] }
stats_by_id = network_stats.to_h { |row| [row[0], { event_count: row[1], unique_ips: row[2] }] }
@top_networks = NetworkRange.where(id: network_ids)
.to_a
.map do |network|
stats = stats_by_id[network.id]
network.define_singleton_method(:event_count) { stats[:event_count] }
network.define_singleton_method(:unique_ips) { stats[:unique_ips] }
# Add inherited intelligence support
intelligence = network.inherited_intelligence
if intelligence[:inherited]
network.define_singleton_method(:display_company) { intelligence[:company] }
network.define_singleton_method(:display_country) { intelligence[:country] }
network.define_singleton_method(:inherited_from) { intelligence[:parent_cidr] }
network.define_singleton_method(:has_inherited_data?) { true }
else
network.define_singleton_method(:display_company) { network.company }
network.define_singleton_method(:display_country) { network.country }
network.define_singleton_method(:inherited_from) { nil }
network.define_singleton_method(:has_inherited_data?) { false }
end
network
end
.sort_by { |n| -n.event_count }
else
# PostgreSQL fallback
event_stats = Event.where("timestamp >= ?", @start_time)
.where.not(network_range_id: nil)
.group(:network_range_id)
.select("network_range_id, COUNT(*) as event_count, COUNT(DISTINCT ip_address) as unique_ips")
@top_networks = NetworkRange.joins("INNER JOIN (#{event_stats.to_sql}) stats ON stats.network_range_id = network_ranges.id")
.select("network_ranges.*, stats.event_count, stats.unique_ips")
.order("stats.event_count DESC")
.limit(50)
# Add inherited intelligence support for PostgreSQL fallback
@top_networks = @top_networks.to_a.map do |network|
intelligence = network.inherited_intelligence
if intelligence[:inherited]
network.define_singleton_method(:display_company) { intelligence[:company] }
network.define_singleton_method(:display_country) { intelligence[:country] }
network.define_singleton_method(:inherited_from) { intelligence[:parent_cidr] }
network.define_singleton_method(:has_inherited_data?) { true }
else
network.define_singleton_method(:display_company) { network.company }
network.define_singleton_method(:display_country) { network.country }
network.define_singleton_method(:inherited_from) { nil }
network.define_singleton_method(:has_inherited_data?) { false }
end
network
end
end
# Network type breakdown with traffic stats
@network_breakdown = calculate_network_type_stats(@start_time)
# Company breakdown for top traffic sources - use DuckDB if available
@top_companies = with_duckdb_fallback { EventDdb.top_companies(@start_time, 20) } ||
Event.where("timestamp >= ? AND company IS NOT NULL", @start_time)
.group(:company)
.select("company, COUNT(*) as event_count, COUNT(DISTINCT ip_address) as unique_ips, COUNT(DISTINCT network_range_id) as network_count")
.order("event_count DESC")
.limit(20)
# ASN breakdown - use DuckDB if available
@top_asns = with_duckdb_fallback { EventDdb.top_asns(@start_time, 15) } ||
Event.where("timestamp >= ? AND asn IS NOT NULL", @start_time)
.group(:asn, :asn_org)
.select("asn, asn_org, COUNT(*) as event_count, COUNT(DISTINCT ip_address) as unique_ips, COUNT(DISTINCT network_range_id) as network_count")
.order("event_count DESC")
.limit(15)
# Geographic breakdown - use DuckDB if available
@top_countries = with_duckdb_fallback { EventDdb.top_countries_with_stats(@start_time, 15) } ||
Event.where("timestamp >= ? AND country IS NOT NULL", @start_time)
.group(:country)
.select("country, COUNT(*) as event_count, COUNT(DISTINCT ip_address) as unique_ips")
.order("event_count DESC")
.limit(15)
# Suspicious network activity patterns
@suspicious_patterns = calculate_suspicious_patterns(@start_time)
respond_to do |format|
format.html
format.json { render json: network_analytics_json }
end
end
private
def calculate_start_time(period)
# Snap to hour/day boundaries for cacheability
# Instead of rolling windows that change every second, use fixed boundaries
case period
when :hour
# Last complete hour: if it's 13:45, show 12:00-13:00
1.hour.ago.beginning_of_hour
when :day
# Last 24 complete hours from current hour boundary
24.hours.ago.beginning_of_hour
when :week
# Last 7 complete days from today's start
7.days.ago.beginning_of_day
when :month
# Last 30 complete days from today's start
30.days.ago.beginning_of_day
else
24.hours.ago.beginning_of_hour
end
end
def prepare_chart_data_with_split_cache(cache_key_base, cache_ttl)
# Split timeline into historical (completed hours) and current (incomplete hour)
# Historical hours are cached for full TTL, current hour cached briefly for freshness
# Cache historical hours (1-23 hours ago) - these are complete and won't change
# No expiration - will stick around until evicted by cache store (uses DuckDB if available)
historical_timeline = Rails.cache.fetch("#{cache_key_base}/chart_historical") do
historical_start = 23.hours.ago.beginning_of_hour
current_hour_start = Time.current.beginning_of_hour
events_by_hour = with_duckdb_fallback { EventDdb.hourly_timeline(historical_start, current_hour_start) } ||
Event.where("timestamp >= ? AND timestamp < ?", historical_start, current_hour_start)
.group("DATE_TRUNC('hour', timestamp)")
.count
(1..23).map do |hour_ago|
hour_time = hour_ago.hours.ago.beginning_of_hour
hour_key = hour_time.utc
{
time_iso: hour_time.iso8601,
total: events_by_hour[hour_key] || 0
}
end
end
# Current hour (0 hours ago) - cache very briefly since it's actively accumulating
# ALWAYS use PostgreSQL for current hour to get real-time data (DuckDB syncs every minute)
current_hour_data = Rails.cache.fetch("#{cache_key_base}/chart_current_hour", expires_in: 1.minute) do
hour_time = Time.current.beginning_of_hour
count = Event.where("timestamp >= ?", hour_time).count
{
time_iso: hour_time.iso8601,
total: count
}
end
# Combine current + historical for full 24-hour timeline
timeline_data = [current_hour_data] + historical_timeline
# Action distribution and other chart data (cached with main cache)
other_chart_data = Rails.cache.fetch("#{cache_key_base}/chart_metadata", expires_in: cache_ttl) do
action_distribution = @event_breakdown.map do |action, count|
{
action: action.humanize,
count: count,
percentage: ((count.to_f / [@total_events, 1].max) * 100).round(1)
}
end
{
actions: action_distribution,
countries: @top_countries.map { |country, count| { country: country, count: count } },
network_types: [
{ type: "Datacenter", count: @network_intelligence[:datacenter_ranges] },
{ type: "VPN", count: @network_intelligence[:vpn_ranges] },
{ type: "Proxy", count: @network_intelligence[:proxy_ranges] },
{ type: "Standard", count: @network_intelligence[:total_ranges] - @network_intelligence[:datacenter_ranges] - @network_intelligence[:vpn_ranges] - @network_intelligence[:proxy_ranges] }
]
}
end
# Merge timeline with other chart data
other_chart_data.merge(timeline: timeline_data)
end
def prepare_chart_data
# Legacy method - kept for reference but no longer used
# Events over time (hourly buckets) - use @start_time for consistency
events_by_hour = Event.where("timestamp >= ?", @start_time)
.group("DATE_TRUNC('hour', timestamp)")
.count
# Convert to chart format - snap to hour boundaries for cacheability
timeline_data = (0..23).map do |hour_ago|
# Use hour boundaries instead of rolling times
hour_time = hour_ago.hours.ago.beginning_of_hour
hour_key = hour_time.utc
{
# Store as ISO string for JavaScript to handle timezone conversion
time_iso: hour_time.iso8601,
total: events_by_hour[hour_key] || 0
}
end
# Action distribution for pie chart
action_distribution = @event_breakdown.map do |action, count|
{
action: action.humanize,
count: count,
percentage: ((count.to_f / [@total_events, 1].max) * 100).round(1)
}
end
{
timeline: timeline_data,
actions: action_distribution,
countries: @top_countries.map { |country, count| { country: country, count: count } },
network_types: [
{ type: "Datacenter", count: @network_intelligence[:datacenter_ranges] },
{ type: "VPN", count: @network_intelligence[:vpn_ranges] },
{ type: "Proxy", count: @network_intelligence[:proxy_ranges] },
{ type: "Standard", count: @network_intelligence[:total_ranges] - @network_intelligence[:datacenter_ranges] - @network_intelligence[:vpn_ranges] - @network_intelligence[:proxy_ranges] }
]
}
end
def calculate_network_type_stats(start_time)
# Try DuckDB first, fallback to PostgreSQL
duckdb_stats = with_duckdb_fallback { EventDdb.network_type_stats(start_time) }
return duckdb_stats if duckdb_stats
# PostgreSQL fallback
# Get all network types with their traffic statistics using denormalized columns
network_types = [
{ type: 'datacenter', label: 'Datacenter', column: :is_datacenter },
{ type: 'vpn', label: 'VPN', column: :is_vpn },
{ type: 'proxy', label: 'Proxy', column: :is_proxy }
]
results = {}
total_events = Event.where("timestamp >= ?", start_time).count
network_types.each do |network_type|
# Query events directly using denormalized flags
event_stats = Event.where("timestamp >= ? AND #{network_type[:column]} = ?", start_time, true)
.select("COUNT(*) as event_count, COUNT(DISTINCT ip_address) as unique_ips, COUNT(DISTINCT network_range_id) as network_count")
.reorder(nil)
.take
results[network_type[:type]] = {
label: network_type[:label],
networks: event_stats.network_count || 0,
events: event_stats.event_count || 0,
unique_ips: event_stats.unique_ips || 0,
percentage: total_events > 0 ? ((event_stats.event_count.to_f / total_events) * 100).round(1) : 0
}
end
# Calculate standard networks (everything else)
standard_stats = Event.where("timestamp >= ? AND is_datacenter = ? AND is_vpn = ? AND is_proxy = ?", start_time, false, false, false)
.select("COUNT(*) as event_count, COUNT(DISTINCT ip_address) as unique_ips, COUNT(DISTINCT network_range_id) as network_count")
.take
results['standard'] = {
label: 'Standard',
networks: standard_stats.network_count || 0,
events: standard_stats.event_count || 0,
unique_ips: standard_stats.unique_ips || 0,
percentage: total_events > 0 ? ((standard_stats.event_count.to_f / total_events) * 100).round(1) : 0
}
results
end
def calculate_suspicious_patterns(start_time)
# Try DuckDB first, fallback to PostgreSQL
duckdb_patterns = with_duckdb_fallback { EventDdb.suspicious_patterns(start_time) }
return duckdb_patterns if duckdb_patterns
# PostgreSQL fallback
patterns = {}
# High volume networks (top 1% by request count) - using denormalized network_range_id
total_networks = Event.where("timestamp >= ? AND network_range_id IS NOT NULL", start_time)
.distinct.count(:network_range_id)
if total_networks > 0
avg_events_per_network = Event.where("timestamp >= ?", start_time).count / total_networks
high_volume_networks = Event.where("timestamp >= ? AND network_range_id IS NOT NULL", start_time)
.group(:network_range_id)
.having("COUNT(*) > ?", avg_events_per_network * 5)
.count
patterns[:high_volume] = {
count: high_volume_networks.count,
networks: high_volume_networks.keys
}
else
patterns[:high_volume] = { count: 0, networks: [] }
end
# Networks with high deny rates (> 50% blocked requests) - using denormalized network_range_id
high_deny_networks = Event.where("timestamp >= ? AND network_range_id IS NOT NULL", start_time)
.group(:network_range_id)
.select("network_range_id,
COUNT(CASE WHEN waf_action = 0 THEN 1 END) as denied_count,
COUNT(*) as total_count")
.having("COUNT(CASE WHEN waf_action = 0 THEN 1 END)::float / COUNT(*) > 0.5")
.having("COUNT(*) >= 10") # minimum threshold
patterns[:high_deny_rate] = {
count: high_deny_networks.length,
network_ids: high_deny_networks.map(&:network_range_id)
}
# Companies appearing with multiple IPs (potential botnets) - using denormalized company column
company_subnets = Event.where("timestamp >= ? AND company IS NOT NULL", start_time)
.group(:company)
.select("company, COUNT(DISTINCT ip_address) as ip_count")
.having("COUNT(DISTINCT ip_address) > 5")
.order("ip_count DESC")
.limit(10)
patterns[:distributed_companies] = company_subnets.map do |stat|
{
company: stat.company,
subnets: stat.ip_count
}
end
patterns
end
def network_analytics_json
{
top_networks: @top_networks.map { |network|
{
id: network.id,
cidr: network.cidr,
company: network.display_company,
asn: network.asn,
country: network.display_country,
network_type: network.network_type,
event_count: network.event_count,
unique_ips: network.unique_ips,
has_inherited_data: network.has_inherited_data?,
inherited_from: network.inherited_from
}
},
network_breakdown: @network_breakdown,
top_companies: @top_companies,
top_asns: @top_asns,
top_countries: @top_countries,
suspicious_patterns: @suspicious_patterns
}
end
def calculate_job_statistics
# Get job queue information from SolidQueue
begin
total_jobs = SolidQueue::Job.count
pending_jobs = SolidQueue::Job.where(finished_at: nil).count
recent_jobs = SolidQueue::Job.where('created_at > ?', 1.hour.ago).count
# Get jobs by queue name
queue_breakdown = SolidQueue::Job.group(:queue_name).count
# Get recent job activity
recent_enqueued = SolidQueue::Job.where('created_at > ?', 1.hour.ago).count
# Calculate health status
health_status = if pending_jobs > 100
'warning'
elsif pending_jobs > 500
'critical'
else
'healthy'
end
{
total_jobs: total_jobs,
pending_jobs: pending_jobs,
recent_enqueued: recent_enqueued,
queue_breakdown: queue_breakdown,
health_status: health_status
}
rescue => e
Rails.logger.error "Failed to calculate job statistics: #{e.message}"
{
total_jobs: 0,
pending_jobs: 0,
recent_enqueued: 0,
queue_breakdown: {},
health_status: 'error',
error: e.message
}
end
end
# Helper method to try DuckDB first, fall back to PostgreSQL
def with_duckdb_fallback(&block)
result = yield
result.nil? ? nil : result # Return result or nil to trigger fallback
rescue StandardError => e
Rails.logger.warn "[Analytics] DuckDB query failed, falling back to PostgreSQL: #{e.message}"
nil # Return nil to trigger fallback
end
# Check if DuckDB has recent data (within last 2 minutes)
# Returns true if DuckDB is up-to-date, false if potentially stale
def duckdb_is_fresh?
newest = AnalyticsDuckdbService.instance.newest_event_timestamp
return false if newest.nil?
# Consider fresh if newest event is within 2 minutes
# (sync job runs every 1 minute, so 2 minutes allows for some lag)
newest >= 2.minutes.ago
rescue StandardError => e
Rails.logger.warn "[Analytics] Error checking DuckDB freshness: #{e.message}"
false
end
end