mirror of
https://github.com/dkam/decisiontree.git
synced 2025-12-28 15:14:52 +00:00
Merge branch 'dvisockas-master'
This commit is contained in:
@@ -2,15 +2,25 @@ require 'rubygems'
|
||||
require 'decisiontree'
|
||||
include DecisionTree
|
||||
|
||||
# ---Continuous-----------------------------------------------------------------------------------------
|
||||
# ---Continuous---
|
||||
|
||||
# Read in the training data
|
||||
training, attributes = [], nil
|
||||
File.open('data/continuous-training.txt','r').each_line { |line|
|
||||
training = []
|
||||
File.open('data/continuous-training.txt', 'r').each_line do |line|
|
||||
data = line.strip.chomp('.').split(',')
|
||||
attributes ||= data
|
||||
training.push(data.collect {|v| (v == 'healthy') || (v == 'colic') ? (v == 'healthy' ? 1 : 0) : v.to_f})
|
||||
}
|
||||
training_data = data.collect do |v|
|
||||
case v
|
||||
when 'healthy'
|
||||
1
|
||||
when 'colic'
|
||||
0
|
||||
else
|
||||
v.to_f
|
||||
end
|
||||
end
|
||||
training.push(training_data)
|
||||
end
|
||||
|
||||
# Remove the attribute row from the training data
|
||||
training.shift
|
||||
@@ -19,15 +29,25 @@ training.shift
|
||||
dec_tree = ID3Tree.new(attributes, training, 1, :continuous)
|
||||
dec_tree.train
|
||||
|
||||
#---- Test the tree....
|
||||
# ---Test the tree---
|
||||
|
||||
# Read in the test cases
|
||||
# Note: omit the attribute line (first line), we know the labels from the training data
|
||||
test = []
|
||||
File.open('data/continuous-test.txt','r').each_line { |line|
|
||||
File.open('data/continuous-test.txt', 'r').each_line do |line|
|
||||
data = line.strip.chomp('.').split(',')
|
||||
test.push(data.collect {|v| (v == 'healthy') || (v == 'colic') ? (v == 'healthy' ? 1 : 0) : v.to_f})
|
||||
}
|
||||
test_data = data.collect do |v|
|
||||
if v == 'healthy' || v == 'colic'
|
||||
v == 'healthy' ? 1 : 0
|
||||
else
|
||||
v.to_f
|
||||
end
|
||||
end
|
||||
test.push(test_data)
|
||||
end
|
||||
|
||||
# Let the tree predict the output and compare it to the true specified value
|
||||
test.each { |t| predict = dec_tree.predict(t); puts "Predict: #{predict} ... True: #{t.last}"}
|
||||
test.each do |t|
|
||||
predict = dec_tree.predict(t)
|
||||
puts "Predict: #{predict} ... True: #{t.last}"
|
||||
end
|
||||
|
||||
@@ -1,15 +1,25 @@
|
||||
require 'rubygems'
|
||||
require 'decisiontree'
|
||||
|
||||
# ---Discrete-----------------------------------------------------------------------------------------
|
||||
# ---Discrete---
|
||||
|
||||
# Read in the training data
|
||||
training, attributes = [], nil
|
||||
File.open('data/discrete-training.txt','r').each_line { |line|
|
||||
training = []
|
||||
File.open('data/discrete-training.txt', 'r').each_line do |line|
|
||||
data = line.strip.split(',')
|
||||
attributes ||= data
|
||||
training.push(data.collect {|v| (v == 'will buy') || (v == "won't buy") ? (v == 'will buy' ? 1 : 0) : v})
|
||||
}
|
||||
training_data = data.collect do |v|
|
||||
case v
|
||||
when 'will buy'
|
||||
1
|
||||
when "won't buy"
|
||||
0
|
||||
else
|
||||
v
|
||||
end
|
||||
end
|
||||
training.push(training_data)
|
||||
end
|
||||
|
||||
# Remove the attribute row from the training data
|
||||
training.shift
|
||||
@@ -18,17 +28,31 @@ training.shift
|
||||
dec_tree = DecisionTree::ID3Tree.new(attributes, training, 1, :discrete)
|
||||
dec_tree.train
|
||||
|
||||
#---- Test the tree....
|
||||
# ---Test the tree---
|
||||
|
||||
# Read in the test cases
|
||||
# Note: omit the attribute line (first line), we know the labels from the training data
|
||||
test = []
|
||||
File.open('data/discrete-test.txt','r').each_line { |line| data = line.strip.split(',')
|
||||
test.push(data.collect {|v| (v == 'will buy') || (v == "won't buy") ? (v == 'will buy' ? 1 : 0) : v})
|
||||
}
|
||||
File.open('data/discrete-test.txt', 'r').each_line do |line|
|
||||
data = line.strip.split(',')
|
||||
test_data = data.collect do |v|
|
||||
case v
|
||||
when 'will buy'
|
||||
1
|
||||
when "won't buy"
|
||||
0
|
||||
else
|
||||
v
|
||||
end
|
||||
end
|
||||
training.push(test_data)
|
||||
end
|
||||
|
||||
# Let the tree predict the output and compare it to the true specified value
|
||||
test.each { |t| predict = dec_tree.predict(t); puts "Predict: #{predict} ... True: #{t.last}"; }
|
||||
test.each do |t|
|
||||
predict = dec_tree.predict(t)
|
||||
puts "Predict: #{predict} ... True: #{t.last}"
|
||||
end
|
||||
|
||||
# Graph the tree, save to 'discrete.png'
|
||||
dec_tree.graph("discrete")
|
||||
dec_tree.graph('discrete')
|
||||
|
||||
@@ -10,7 +10,7 @@ training = [
|
||||
[38, 'sick'],
|
||||
[36.7, 'healthy'],
|
||||
[40, 'sick'],
|
||||
[50, 'really sick'],
|
||||
[50, 'really sick']
|
||||
]
|
||||
|
||||
# Instantiate the tree, and train it based on the data (set default to '1')
|
||||
@@ -20,9 +20,7 @@ dec_tree.train
|
||||
test = [37, 'sick']
|
||||
|
||||
decision = dec_tree.predict(test)
|
||||
puts "Predicted: #{decision} ... True decision: #{test.last}";
|
||||
puts "Predicted: #{decision} ... True decision: #{test.last}"
|
||||
|
||||
# Graph the tree, save to 'tree.png'
|
||||
dec_tree.graph("tree")
|
||||
|
||||
|
||||
dec_tree.graph('tree')
|
||||
|
||||
29
lib/core_extensions/array.rb
Normal file
29
lib/core_extensions/array.rb
Normal file
@@ -0,0 +1,29 @@
|
||||
class Array
|
||||
def classification
|
||||
collect(&:last)
|
||||
end
|
||||
|
||||
# calculate information entropy
|
||||
def entropy
|
||||
return 0 if empty?
|
||||
|
||||
info = {}
|
||||
each do |i|
|
||||
info[i] = !info[i] ? 1 : (info[i] + 1)
|
||||
end
|
||||
|
||||
result(info, length)
|
||||
end
|
||||
|
||||
private
|
||||
|
||||
def result(info, total)
|
||||
final = 0
|
||||
info.each do |_symbol, count|
|
||||
next unless count > 0
|
||||
percentage = count.to_f / total
|
||||
final += -percentage * Math.log(percentage) / Math.log(2.0)
|
||||
end
|
||||
final
|
||||
end
|
||||
end
|
||||
9
lib/core_extensions/object.rb
Normal file
9
lib/core_extensions/object.rb
Normal file
@@ -0,0 +1,9 @@
|
||||
class Object
|
||||
def save_to_file(filename)
|
||||
File.open(filename, 'w+') { |f| f << Marshal.dump(self) }
|
||||
end
|
||||
|
||||
def self.load_from_file(filename)
|
||||
Marshal.load(File.read(filename))
|
||||
end
|
||||
end
|
||||
@@ -1 +1,3 @@
|
||||
require File.dirname(__FILE__) + '/decisiontree/id3_tree.rb'
|
||||
require 'core_extensions/object'
|
||||
require 'core_extensions/array'
|
||||
|
||||
@@ -3,50 +3,33 @@
|
||||
### Copyright (c) 2007 Ilya Grigorik <ilya AT igvita DOT com>
|
||||
### Modifed at 2007 by José Ignacio Fernández <joseignacio.fernandez AT gmail DOT com>
|
||||
|
||||
class Object
|
||||
def save_to_file(filename)
|
||||
File.open(filename, 'w+' ) { |f| f << Marshal.dump(self) }
|
||||
end
|
||||
|
||||
def self.load_from_file(filename)
|
||||
Marshal.load( File.read( filename ) )
|
||||
end
|
||||
end
|
||||
|
||||
class Array
|
||||
def classification; collect { |v| v.last }; end
|
||||
|
||||
# calculate information entropy
|
||||
def entropy
|
||||
return 0 if empty?
|
||||
|
||||
info = {}
|
||||
total = 0
|
||||
each {|i| info[i] = !info[i] ? 1 : (info[i] + 1); total += 1}
|
||||
|
||||
result = 0
|
||||
info.each do |symbol, count|
|
||||
result += -count.to_f/total*Math.log(count.to_f/total)/Math.log(2.0) if (count > 0)
|
||||
end
|
||||
result
|
||||
end
|
||||
end
|
||||
|
||||
module DecisionTree
|
||||
Node = Struct.new(:attribute, :threshold, :gain)
|
||||
|
||||
class ID3Tree
|
||||
def initialize(attributes, data, default, type)
|
||||
@used, @tree, @type = {}, {}, type
|
||||
@data, @attributes, @default = data, attributes, default
|
||||
@used = {}
|
||||
@tree = {}
|
||||
@type = type
|
||||
@data = data
|
||||
@attributes = attributes
|
||||
@default = default
|
||||
end
|
||||
|
||||
def train(data = @data, attributes = @attributes, default = @default)
|
||||
attributes = attributes.map {|e| e.to_s}
|
||||
attributes = attributes.map(&:to_s)
|
||||
initialize(attributes, data, default, @type)
|
||||
|
||||
# Remove samples with same attributes leaving most common classification
|
||||
data2 = data.inject({}) {|hash, d| hash[d.slice(0..-2)] ||= Hash.new(0); hash[d.slice(0..-2)][d.last] += 1; hash }.map{|key,val| key + [val.sort_by{ |k, v| v }.last.first]}
|
||||
data2 = data.inject({}) do |hash, d|
|
||||
hash[d.slice(0..-2)] ||= Hash.new(0)
|
||||
hash[d.slice(0..-2)][d.last] += 1
|
||||
hash
|
||||
end
|
||||
|
||||
data2 = data2.map do |key, val|
|
||||
key + [val.sort_by { |_k, v| v }.last.first]
|
||||
end
|
||||
|
||||
@tree = id3_train(data2, attributes, default)
|
||||
end
|
||||
@@ -57,12 +40,14 @@ module DecisionTree
|
||||
|
||||
def fitness_for(attribute)
|
||||
case type(attribute)
|
||||
when :discrete; fitness = proc{|a,b,c| id3_discrete(a,b,c)}
|
||||
when :continuous; fitness = proc{|a,b,c| id3_continuous(a,b,c)}
|
||||
when :discrete
|
||||
proc { |a, b, c| id3_discrete(a, b, c) }
|
||||
when :continuous
|
||||
proc { |a, b, c| id3_continuous(a, b, c) }
|
||||
end
|
||||
end
|
||||
|
||||
def id3_train(data, attributes, default, used={})
|
||||
def id3_train(data, attributes, default, _used={})
|
||||
return default if data.empty?
|
||||
|
||||
# return classification if all examples have the same classification
|
||||
@@ -75,7 +60,7 @@ module DecisionTree
|
||||
performance = attributes.collect { |attribute| fitness_for(attribute).call(data, attributes, attribute) }
|
||||
max = performance.max { |a,b| a[0] <=> b[0] }
|
||||
min = performance.min { |a,b| a[0] <=> b[0] }
|
||||
max = performance.shuffle.first if max[0] == min[0]
|
||||
max = performance.sample if max[0] == min[0]
|
||||
best = Node.new(attributes[performance.index(max)], max[1], max[0])
|
||||
best.threshold = nil if @type == :discrete
|
||||
@used.has_key?(best.attribute) ? @used[best.attribute] += [best.threshold] : @used[best.attribute] = [best.threshold]
|
||||
@@ -84,15 +69,22 @@ module DecisionTree
|
||||
fitness = fitness_for(best.attribute)
|
||||
case type(best.attribute)
|
||||
when :continuous
|
||||
data.partition { |d| d[attributes.index(best.attribute)] >= best.threshold }.each_with_index { |examples, i|
|
||||
partitioned_data = data.partition do |d|
|
||||
d[attributes.index(best.attribute)] >= best.threshold
|
||||
end
|
||||
partitioned_data.each_with_index do |examples, i|
|
||||
tree[best][String.new(l[i])] = id3_train(examples, attributes, (data.classification.mode rescue 0), &fitness)
|
||||
}
|
||||
end
|
||||
when :discrete
|
||||
values = data.collect { |d| d[attributes.index(best.attribute)] }.uniq.sort
|
||||
partitions = values.collect { |val| data.select { |d| d[attributes.index(best.attribute)] == val } }
|
||||
partitions.each_with_index { |examples, i|
|
||||
partitions = values.collect do |val|
|
||||
data.select do |d|
|
||||
d[attributes.index(best.attribute)] == val
|
||||
end
|
||||
end
|
||||
partitions.each_with_index do |examples, i|
|
||||
tree[best][values[i]] = id3_train(examples, attributes - [values[i]], (data.classification.mode rescue 0), &fitness)
|
||||
}
|
||||
end
|
||||
end
|
||||
|
||||
tree
|
||||
@@ -100,19 +92,23 @@ module DecisionTree
|
||||
|
||||
# ID3 for binary classification of continuous variables (e.g. healthy / sick based on temperature thresholds)
|
||||
def id3_continuous(data, attributes, attribute)
|
||||
values, thresholds = data.collect { |d| d[attributes.index(attribute)] }.uniq.sort, []
|
||||
values = data.collect { |d| d[attributes.index(attribute)] }.uniq.sort
|
||||
thresholds = []
|
||||
return [-1, -1] if values.size == 1
|
||||
values.each_index { |i| thresholds.push((values[i]+(values[i+1].nil? ? values[i] : values[i+1])).to_f / 2) }
|
||||
values.each_index do |i|
|
||||
thresholds.push((values[i] + (values[i + 1].nil? ? values[i] : values[i + 1])).to_f / 2)
|
||||
end
|
||||
thresholds.pop
|
||||
#thresholds -= used[attribute] if used.has_key? attribute
|
||||
|
||||
gain = thresholds.collect { |threshold|
|
||||
gain = thresholds.collect do |threshold|
|
||||
sp = data.partition { |d| d[attributes.index(attribute)] >= threshold }
|
||||
pos = (sp[0].size).to_f / data.size
|
||||
neg = (sp[1].size).to_f / data.size
|
||||
|
||||
[data.classification.entropy - pos * sp[0].classification.entropy - neg * sp[1].classification.entropy, threshold]
|
||||
}.max { |a,b| a[0] <=> b[0] }
|
||||
end
|
||||
gain = gain.max { |a, b| a[0] <=> b[0] }
|
||||
|
||||
return [-1, -1] if gain.size == 0
|
||||
gain
|
||||
@@ -122,7 +118,7 @@ module DecisionTree
|
||||
def id3_discrete(data, attributes, attribute)
|
||||
values = data.collect { |d| d[attributes.index(attribute)] }.uniq.sort
|
||||
partitions = values.collect { |val| data.select { |d| d[attributes.index(attribute)] == val } }
|
||||
remainder = partitions.collect {|p| (p.size.to_f / data.size) * p.classification.entropy}.inject(0) {|i,s| s+=i }
|
||||
remainder = partitions.collect { |p| (p.size.to_f / data.size) * p.classification.entropy }.inject(0) { |a, e| e += a }
|
||||
|
||||
[data.classification.entropy - remainder, attributes.index(attribute)]
|
||||
end
|
||||
@@ -131,7 +127,7 @@ module DecisionTree
|
||||
descend(@tree, test)
|
||||
end
|
||||
|
||||
def graph(filename, file_type = "png")
|
||||
def graph(filename, file_type = 'png')
|
||||
require 'graphr'
|
||||
dgp = DotGraphPrinter.new(build_tree)
|
||||
dgp.write_to_file("#{filename}.#{file_type}", file_type)
|
||||
@@ -148,7 +144,7 @@ module DecisionTree
|
||||
cases = attr[1].to_a
|
||||
rules = []
|
||||
cases.each do |c, child|
|
||||
if child.is_a?(Hash) then
|
||||
if child.is_a?(Hash)
|
||||
build_rules(child).each do |r|
|
||||
r2 = r.clone
|
||||
r2.premises.unshift([attr.first, c])
|
||||
@@ -162,12 +158,13 @@ module DecisionTree
|
||||
end
|
||||
|
||||
private
|
||||
|
||||
def descend(tree, test)
|
||||
attr = tree.to_a.first
|
||||
return @default if !attr
|
||||
return @default unless attr
|
||||
if type(attr.first.attribute) == :continuous
|
||||
return attr[1]['>='] if !attr[1]['>='].is_a?(Hash) and test[@attributes.index(attr.first.attribute)] >= attr.first.threshold
|
||||
return attr[1]['<'] if !attr[1]['<'].is_a?(Hash) and test[@attributes.index(attr.first.attribute)] < attr.first.threshold
|
||||
return attr[1]['>='] if !attr[1]['>='].is_a?(Hash) && test[@attributes.index(attr.first.attribute)] >= attr.first.threshold
|
||||
return attr[1]['<'] if !attr[1]['<'].is_a?(Hash) && test[@attributes.index(attr.first.attribute)] < attr.first.threshold
|
||||
return descend(attr[1]['>='], test) if test[@attributes.index(attr.first.attribute)] >= attr.first.threshold
|
||||
return descend(attr[1]['<'], test) if test[@attributes.index(attr.first.attribute)] < attr.first.threshold
|
||||
else
|
||||
@@ -178,26 +175,29 @@ module DecisionTree
|
||||
|
||||
def build_tree(tree = @tree)
|
||||
return [] unless tree.is_a?(Hash)
|
||||
return [["Always", @default]] if tree.empty?
|
||||
return [['Always', @default]] if tree.empty?
|
||||
|
||||
attr = tree.to_a.first
|
||||
|
||||
links = attr[1].keys.collect do |key|
|
||||
parent_text = "#{attr[0].attribute}\n(#{attr[0].object_id})"
|
||||
if attr[1][key].is_a?(Hash) then
|
||||
if attr[1][key].is_a?(Hash)
|
||||
child = attr[1][key].to_a.first[0]
|
||||
child_text = "#{child.attribute}\n(#{child.object_id})"
|
||||
else
|
||||
child = attr[1][key]
|
||||
child_text = "#{child}\n(#{child.to_s.clone.object_id})"
|
||||
end
|
||||
label_text = "#{key} #{type(attr[0].attribute) == :continuous ? attr[0].threshold : ""}"
|
||||
label_text = "#{key} ''"
|
||||
if type(attr[0].attribute) == :continuous
|
||||
label_text.gsub!("''", attr[0].threshold)
|
||||
end
|
||||
|
||||
[parent_text, child_text, label_text]
|
||||
end
|
||||
attr[1].keys.each { |key| links += build_tree(attr[1][key]) }
|
||||
|
||||
return links
|
||||
links
|
||||
end
|
||||
end
|
||||
|
||||
@@ -207,42 +207,50 @@ module DecisionTree
|
||||
attr_accessor :attributes
|
||||
|
||||
def initialize(attributes, premises = [], conclusion = nil)
|
||||
@attributes, @premises, @conclusion = attributes, premises, conclusion
|
||||
@attributes = attributes
|
||||
@premises = premises
|
||||
@conclusion = conclusion
|
||||
end
|
||||
|
||||
def to_s
|
||||
str = ''
|
||||
@premises.each do |p|
|
||||
str += "#{p.first.attribute} #{p.last} #{p.first.threshold}" if p.first.threshold
|
||||
str += "#{p.first.attribute} = #{p.last}" if !p.first.threshold
|
||||
if p.first.threshold
|
||||
str += "#{p.first.attribute} #{p.last} #{p.first.threshold}"
|
||||
else
|
||||
str += "#{p.first.attribute} = #{p.last}"
|
||||
end
|
||||
str += "\n"
|
||||
end
|
||||
str += "=> #{@conclusion} (#{accuracy})"
|
||||
end
|
||||
|
||||
def predict(test)
|
||||
verifies = true;
|
||||
verifies = true
|
||||
@premises.each do |p|
|
||||
if p.first.threshold then # Continuous
|
||||
if !(p.last == '>=' && test[@attributes.index(p.first.attribute)] >= p.first.threshold) && !(p.last == '<' && test[@attributes.index(p.first.attribute)] < p.first.threshold) then
|
||||
verifies = false; break
|
||||
if p.first.threshold # Continuous
|
||||
if !(p.last == '>=' && test[@attributes.index(p.first.attribute)] >= p.first.threshold) && !(p.last == '<' && test[@attributes.index(p.first.attribute)] < p.first.threshold)
|
||||
verifies = false
|
||||
break
|
||||
end
|
||||
else # Discrete
|
||||
if test[@attributes.index(p.first.attribute)] != p.last then
|
||||
verifies = false; break
|
||||
if test[@attributes.index(p.first.attribute)] != p.last
|
||||
verifies = false
|
||||
break
|
||||
end
|
||||
end
|
||||
end
|
||||
return @conclusion if verifies
|
||||
return nil
|
||||
nil
|
||||
end
|
||||
|
||||
def get_accuracy(data)
|
||||
correct = 0; total = 0
|
||||
correct = 0
|
||||
total = 0
|
||||
data.each do |d|
|
||||
prediction = predict(d)
|
||||
correct += 1 if d.last == prediction
|
||||
total += 1 if !prediction.nil?
|
||||
total += 1 unless prediction.nil?
|
||||
end
|
||||
(correct.to_f + 1) / (total.to_f + 2)
|
||||
end
|
||||
@@ -256,7 +264,9 @@ module DecisionTree
|
||||
attr_accessor :rules
|
||||
|
||||
def initialize(attributes, data, default, type)
|
||||
@attributes, @default, @type = attributes, default, type
|
||||
@attributes = attributes
|
||||
@default = default
|
||||
@type = type
|
||||
mixed_data = data.sort_by { rand }
|
||||
cut = (mixed_data.size.to_f * 0.67).to_i
|
||||
@train_data = mixed_data.slice(0..cut - 1)
|
||||
@@ -276,8 +286,9 @@ module DecisionTree
|
||||
(1..r.premises.size).each do
|
||||
acc1 = r.accuracy(data)
|
||||
p = r.premises.pop
|
||||
if acc1 > r.get_accuracy(data) then
|
||||
r.premises.push(p); break
|
||||
if acc1 > r.get_accuracy(data)
|
||||
r.premises.push(p)
|
||||
break
|
||||
end
|
||||
end
|
||||
end
|
||||
@@ -285,7 +296,8 @@ module DecisionTree
|
||||
end
|
||||
|
||||
def to_s
|
||||
str = ''; @rules.each { |rule| str += "#{rule}\n\n" }
|
||||
str = ''
|
||||
@rules.each { |rule| str += "#{rule}\n\n" }
|
||||
str
|
||||
end
|
||||
|
||||
@@ -294,15 +306,18 @@ module DecisionTree
|
||||
prediction = r.predict(test)
|
||||
return prediction, r.accuracy unless prediction.nil?
|
||||
end
|
||||
return @default, 0.0
|
||||
[@default, 0.0]
|
||||
end
|
||||
end
|
||||
|
||||
class Bagging
|
||||
attr_accessor :classifiers
|
||||
def initialize(attributes, data, default, type)
|
||||
@classifiers, @type = [], type
|
||||
@data, @attributes, @default = data, attributes, default
|
||||
@classifiers = []
|
||||
@type = type
|
||||
@data = data
|
||||
@attributes = attributes
|
||||
@default = default
|
||||
end
|
||||
|
||||
def train(data = @data, attributes = @attributes, default = @default)
|
||||
@@ -320,8 +335,8 @@ module DecisionTree
|
||||
predictions[p] += accuracy unless p.nil?
|
||||
end
|
||||
return @default, 0.0 if predictions.empty?
|
||||
winner = predictions.sort_by {|k,v| -v}.first
|
||||
return winner[0], winner[1].to_f / @classifiers.size.to_f
|
||||
winner = predictions.sort_by { |_k, v| -v }.first
|
||||
[winner[0], winner[1].to_f / @classifiers.size.to_f]
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
Reference in New Issue
Block a user