Style changes

This commit is contained in:
Danielius
2015-11-20 14:22:03 +02:00
parent 310b73bacd
commit 8a8cc1e988

View File

@@ -5,17 +5,17 @@
class Object class Object
def save_to_file(filename) def save_to_file(filename)
File.open(filename, 'w+' ) { |f| f << Marshal.dump(self) } File.open(filename, 'w+') { |f| f << Marshal.dump(self) }
end end
def self.load_from_file(filename) def self.load_from_file(filename)
Marshal.load( File.read( filename ) ) Marshal.load(File.read(filename))
end end
end end
class Array class Array
def classification def classification
collect { |v| v.last } collect(&:last)
end end
# calculate information entropy # calculate information entropy
@@ -24,11 +24,16 @@ class Array
info = {} info = {}
total = 0 total = 0
each { |i| info[i] = !info[i] ? 1 : (info[i] + 1); total += 1} each do |i|
info[i] = !info[i] ? 1 : (info[i] + 1)
total += 1
end
result = 0 result = 0
info.each do |symbol, count| info.each do |_symbol, count|
result += -count.to_f/total*Math.log(count.to_f/total)/Math.log(2.0) if (count > 0) if count > 0
result += -count.to_f / total * Math.log(count.to_f / total) / Math.log(2.0)
end
end end
result result
end end
@@ -39,16 +44,28 @@ module DecisionTree
class ID3Tree class ID3Tree
def initialize(attributes, data, default, type) def initialize(attributes, data, default, type)
@used, @tree, @type = {}, {}, type @used = {}
@data, @attributes, @default = data, attributes, default @tree = {}
@type = type
@data = data
@attributes = attributes
@default = default
end end
def train(data=@data, attributes=@attributes, default=@default) def train(data = @data, attributes = @attributes, default = @default)
attributes = attributes.map { |e| e.to_s} attributes = attributes.map(&:to_s)
initialize(attributes, data, default, @type) initialize(attributes, data, default, @type)
# Remove samples with same attributes leaving most common classification # Remove samples with same attributes leaving most common classification
data2 = data.inject({}) { |hash, d| hash[d.slice(0..-2)] ||= Hash.new(0); hash[d.slice(0..-2)][d.last] += 1; hash }.map{ |key,val| key + [val.sort_by{ |k, v| v }.last.first]} data2 = data.inject({}) do |hash, d|
hash[d.slice(0..-2)] ||= Hash.new(0)
hash[d.slice(0..-2)][d.last] += 1
hash
end
data2 = data2.map do |key, val|
key + [val.sort_by { |_k, v| v }.last.first]
end
@tree = id3_train(data2, attributes, default) @tree = id3_train(data2, attributes, default)
end end
@@ -59,12 +76,14 @@ module DecisionTree
def fitness_for(attribute) def fitness_for(attribute)
case type(attribute) case type(attribute)
when :discrete; fitness = proc { |a,b,c| id3_discrete(a,b,c) } when :discrete
when :continuous; fitness = proc { |a,b,c| id3_continuous(a,b,c) } proc { |a, b, c| id3_discrete(a, b, c) }
when :continuous
proc { |a, b, c| id3_continuous(a, b, c) }
end end
end end
def id3_train(data, attributes, default, used={}) def id3_train(data, attributes, default, _used={})
return default if data.empty? return default if data.empty?
# return classification if all examples have the same classification # return classification if all examples have the same classification
@@ -77,7 +96,7 @@ module DecisionTree
performance = attributes.collect { |attribute| fitness_for(attribute).call(data, attributes, attribute) } performance = attributes.collect { |attribute| fitness_for(attribute).call(data, attributes, attribute) }
max = performance.max { |a,b| a[0] <=> b[0] } max = performance.max { |a,b| a[0] <=> b[0] }
min = performance.min { |a,b| a[0] <=> b[0] } min = performance.min { |a,b| a[0] <=> b[0] }
max = performance.shuffle.first if max[0] == min[0] max = performance.sample if max[0] == min[0]
best = Node.new(attributes[performance.index(max)], max[1], max[0]) best = Node.new(attributes[performance.index(max)], max[1], max[0])
best.threshold = nil if @type == :discrete best.threshold = nil if @type == :discrete
@used.has_key?(best.attribute) ? @used[best.attribute] += [best.threshold] : @used[best.attribute] = [best.threshold] @used.has_key?(best.attribute) ? @used[best.attribute] += [best.threshold] : @used[best.attribute] = [best.threshold]
@@ -86,15 +105,21 @@ module DecisionTree
fitness = fitness_for(best.attribute) fitness = fitness_for(best.attribute)
case type(best.attribute) case type(best.attribute)
when :continuous when :continuous
data.partition { |d| d[attributes.index(best.attribute)] >= best.threshold }.each_with_index { |examples, i| data.partition do |d|
d[attributes.index(best.attribute)] >= best.threshold
end.each_with_index do |examples, i|
tree[best][String.new(l[i])] = id3_train(examples, attributes, (data.classification.mode rescue 0), &fitness) tree[best][String.new(l[i])] = id3_train(examples, attributes, (data.classification.mode rescue 0), &fitness)
} end
when :discrete when :discrete
values = data.collect { |d| d[attributes.index(best.attribute)] }.uniq.sort values = data.collect { |d| d[attributes.index(best.attribute)] }.uniq.sort
partitions = values.collect { |val| data.select { |d| d[attributes.index(best.attribute)] == val } } partitions = values.collect do |val|
partitions.each_with_index { |examples, i| data.select do |d|
tree[best][values[i]] = id3_train(examples, attributes-[values[i]], (data.classification.mode rescue 0), &fitness) d[attributes.index(best.attribute)] == val
} end
end
partitions.each_with_index do |examples, i|
tree[best][values[i]] = id3_train(examples, attributes - [values[i]], (data.classification.mode rescue 0), &fitness)
end
end end
tree tree
@@ -102,19 +127,23 @@ module DecisionTree
# ID3 for binary classification of continuous variables (e.g. healthy / sick based on temperature thresholds) # ID3 for binary classification of continuous variables (e.g. healthy / sick based on temperature thresholds)
def id3_continuous(data, attributes, attribute) def id3_continuous(data, attributes, attribute)
values, thresholds = data.collect { |d| d[attributes.index(attribute)] }.uniq.sort, [] values = data.collect { |d| d[attributes.index(attribute)] }.uniq.sort
thresholds = []
return [-1, -1] if values.size == 1 return [-1, -1] if values.size == 1
values.each_index { |i| thresholds.push((values[i]+(values[i+1].nil? ? values[i] : values[i+1])).to_f / 2) } values.each_index do |i|
thresholds.push((values[i] + (values[i + 1].nil? ? values[i] : values[i + 1])).to_f / 2)
end
thresholds.pop thresholds.pop
#thresholds -= used[attribute] if used.has_key? attribute #thresholds -= used[attribute] if used.has_key? attribute
gain = thresholds.collect { |threshold| gain = thresholds.collect do |threshold|
sp = data.partition { |d| d[attributes.index(attribute)] >= threshold } sp = data.partition { |d| d[attributes.index(attribute)] >= threshold }
pos = (sp[0].size).to_f / data.size pos = (sp[0].size).to_f / data.size
neg = (sp[1].size).to_f / data.size neg = (sp[1].size).to_f / data.size
[data.classification.entropy - pos*sp[0].classification.entropy - neg*sp[1].classification.entropy, threshold] [data.classification.entropy - pos * sp[0].classification.entropy - neg * sp[1].classification.entropy, threshold]
}.max { |a,b| a[0] <=> b[0] } end
gain = gain.max { |a, b| a[0] <=> b[0] }
return [-1, -1] if gain.size == 0 return [-1, -1] if gain.size == 0
gain gain
@@ -124,7 +153,7 @@ module DecisionTree
def id3_discrete(data, attributes, attribute) def id3_discrete(data, attributes, attribute)
values = data.collect { |d| d[attributes.index(attribute)] }.uniq.sort values = data.collect { |d| d[attributes.index(attribute)] }.uniq.sort
partitions = values.collect { |val| data.select { |d| d[attributes.index(attribute)] == val } } partitions = values.collect { |val| data.select { |d| d[attributes.index(attribute)] == val } }
remainder = partitions.collect { |p| (p.size.to_f / data.size) * p.classification.entropy}.inject(0) { |i,s| s+=i } remainder = partitions.collect { |p| (p.size.to_f / data.size) * p.classification.entropy }.inject(0) { |a, e| e += a }
[data.classification.entropy - remainder, attributes.index(attribute)] [data.classification.entropy - remainder, attributes.index(attribute)]
end end
@@ -133,7 +162,7 @@ module DecisionTree
descend(@tree, test) descend(@tree, test)
end end
def graph(filename, file_type = "png") def graph(filename, file_type = 'png')
require 'graphr' require 'graphr'
dgp = DotGraphPrinter.new(build_tree) dgp = DotGraphPrinter.new(build_tree)
dgp.write_to_file("#{filename}.#{file_type}", file_type) dgp.write_to_file("#{filename}.#{file_type}", file_type)
@@ -145,12 +174,12 @@ module DecisionTree
rs rs
end end
def build_rules(tree=@tree) def build_rules(tree = @tree)
attr = tree.to_a.first attr = tree.to_a.first
cases = attr[1].to_a cases = attr[1].to_a
rules = [] rules = []
cases.each do |c,child| cases.each do |c, child|
if child.is_a?(Hash) then if child.is_a?(Hash)
build_rules(child).each do |r| build_rules(child).each do |r|
r2 = r.clone r2 = r.clone
r2.premises.unshift([attr.first, c]) r2.premises.unshift([attr.first, c])
@@ -164,42 +193,46 @@ module DecisionTree
end end
private private
def descend(tree, test) def descend(tree, test)
attr = tree.to_a.first attr = tree.to_a.first
return @default if !attr return @default unless attr
if type(attr.first.attribute) == :continuous if type(attr.first.attribute) == :continuous
return attr[1]['>='] if !attr[1]['>='].is_a?(Hash) and test[@attributes.index(attr.first.attribute)] >= attr.first.threshold return attr[1]['>='] if !attr[1]['>='].is_a?(Hash) && test[@attributes.index(attr.first.attribute)] >= attr.first.threshold
return attr[1]['<'] if !attr[1]['<'].is_a?(Hash) and test[@attributes.index(attr.first.attribute)] < attr.first.threshold return attr[1]['<'] if !attr[1]['<'].is_a?(Hash) && test[@attributes.index(attr.first.attribute)] < attr.first.threshold
return descend(attr[1]['>='],test) if test[@attributes.index(attr.first.attribute)] >= attr.first.threshold return descend(attr[1]['>='], test) if test[@attributes.index(attr.first.attribute)] >= attr.first.threshold
return descend(attr[1]['<'],test) if test[@attributes.index(attr.first.attribute)] < attr.first.threshold return descend(attr[1]['<'], test) if test[@attributes.index(attr.first.attribute)] < attr.first.threshold
else else
return attr[1][test[@attributes.index(attr[0].attribute)]] if !attr[1][test[@attributes.index(attr[0].attribute)]].is_a?(Hash) return attr[1][test[@attributes.index(attr[0].attribute)]] if !attr[1][test[@attributes.index(attr[0].attribute)]].is_a?(Hash)
return descend(attr[1][test[@attributes.index(attr[0].attribute)]],test) return descend(attr[1][test[@attributes.index(attr[0].attribute)]], test)
end end
end end
def build_tree(tree = @tree) def build_tree(tree = @tree)
return [] unless tree.is_a?(Hash) return [] unless tree.is_a?(Hash)
return [["Always", @default]] if tree.empty? return [['Always', @default]] if tree.empty?
attr = tree.to_a.first attr = tree.to_a.first
links = attr[1].keys.collect do |key| links = attr[1].keys.collect do |key|
parent_text = "#{attr[0].attribute}\n(#{attr[0].object_id})" parent_text = "#{attr[0].attribute}\n(#{attr[0].object_id})"
if attr[1][key].is_a?(Hash) then if attr[1][key].is_a?(Hash)
child = attr[1][key].to_a.first[0] child = attr[1][key].to_a.first[0]
child_text = "#{child.attribute}\n(#{child.object_id})" child_text = "#{child.attribute}\n(#{child.object_id})"
else else
child = attr[1][key] child = attr[1][key]
child_text = "#{child}\n(#{child.to_s.clone.object_id})" child_text = "#{child}\n(#{child.to_s.clone.object_id})"
end end
label_text = "#{key} #{type(attr[0].attribute) == :continuous ? attr[0].threshold : ""}" label_text = "#{key} ''"
if type(attr[0].attribute) == :continuous
label_text.gsub!("''", attr[0].threshold)
end
[parent_text, child_text, label_text] [parent_text, child_text, label_text]
end end
attr[1].keys.each { |key| links += build_tree(attr[1][key]) } attr[1].keys.each { |key| links += build_tree(attr[1][key]) }
return links links
end end
end end
@@ -208,48 +241,56 @@ module DecisionTree
attr_accessor :conclusion attr_accessor :conclusion
attr_accessor :attributes attr_accessor :attributes
def initialize(attributes,premises=[],conclusion=nil) def initialize(attributes, premises = [], conclusion = nil)
@attributes, @premises, @conclusion = attributes, premises, conclusion @attributes = attributes
@premises = premises
@conclusion = conclusion
end end
def to_s def to_s
str = '' str = ''
@premises.each do |p| @premises.each do |p|
str += "#{p.first.attribute} #{p.last} #{p.first.threshold}" if p.first.threshold if p.first.threshold
str += "#{p.first.attribute} = #{p.last}" if !p.first.threshold str += "#{p.first.attribute} #{p.last} #{p.first.threshold}"
else
str += "#{p.first.attribute} = #{p.last}"
end
str += "\n" str += "\n"
end end
str += "=> #{@conclusion} (#{accuracy})" str += "=> #{@conclusion} (#{accuracy})"
end end
def predict(test) def predict(test)
verifies = true; verifies = true
@premises.each do |p| @premises.each do |p|
if p.first.threshold then # Continuous if p.first.threshold # Continuous
if !(p.last == '>=' && test[@attributes.index(p.first.attribute)] >= p.first.threshold) && !(p.last == '<' && test[@attributes.index(p.first.attribute)] < p.first.threshold) then if !(p.last == '>=' && test[@attributes.index(p.first.attribute)] >= p.first.threshold) && !(p.last == '<' && test[@attributes.index(p.first.attribute)] < p.first.threshold)
verifies = false; break verifies = false
break
end end
else # Discrete else # Discrete
if test[@attributes.index(p.first.attribute)] != p.last then if test[@attributes.index(p.first.attribute)] != p.last
verifies = false; break verifies = false
break
end end
end end
end end
return @conclusion if verifies return @conclusion if verifies
return nil nil
end end
def get_accuracy(data) def get_accuracy(data)
correct = 0; total = 0 correct = 0
total = 0
data.each do |d| data.each do |d|
prediction = predict(d) prediction = predict(d)
correct += 1 if d.last == prediction correct += 1 if d.last == prediction
total += 1 if !prediction.nil? total += 1 unless prediction.nil?
end end
(correct.to_f + 1) / (total.to_f + 2) (correct.to_f + 1) / (total.to_f + 2)
end end
def accuracy(data=nil) def accuracy(data = nil)
data.nil? ? @accuracy : @accuracy = get_accuracy(data) data.nil? ? @accuracy : @accuracy = get_accuracy(data)
end end
end end
@@ -258,14 +299,16 @@ module DecisionTree
attr_accessor :rules attr_accessor :rules
def initialize(attributes, data, default, type) def initialize(attributes, data, default, type)
@attributes, @default, @type = attributes, default, type @attributes = attributes
mixed_data = data.sort_by {rand} @default = default
@type = type
mixed_data = data.sort_by { rand }
cut = (mixed_data.size.to_f * 0.67).to_i cut = (mixed_data.size.to_f * 0.67).to_i
@train_data = mixed_data.slice(0..cut-1) @train_data = mixed_data.slice(0..cut - 1)
@prune_data = mixed_data.slice(cut..-1) @prune_data = mixed_data.slice(cut..-1)
end end
def train(train_data=@train_data, attributes=@attributes, default=@default) def train(train_data = @train_data, attributes = @attributes, default = @default)
dec_tree = DecisionTree::ID3Tree.new(attributes, train_data, default, @type) dec_tree = DecisionTree::ID3Tree.new(attributes, train_data, default, @type)
dec_tree.train dec_tree.train
@rules = dec_tree.build_rules @rules = dec_tree.build_rules
@@ -273,21 +316,23 @@ module DecisionTree
prune prune
end end
def prune(data=@prune_data) def prune(data = @prune_data)
@rules.each do |r| @rules.each do |r|
(1..r.premises.size).each do (1..r.premises.size).each do
acc1 = r.accuracy(data) acc1 = r.accuracy(data)
p = r.premises.pop p = r.premises.pop
if acc1 > r.get_accuracy(data) then if acc1 > r.get_accuracy(data)
r.premises.push(p); break r.premises.push(p)
break
end end
end end
end end
@rules = @rules.sort_by{ |r| -r.accuracy(data) } @rules = @rules.sort_by { |r| -r.accuracy(data) }
end end
def to_s def to_s
str = ''; @rules.each { |rule| str += "#{rule}\n\n" } str = ''
@rules.each { |rule| str += "#{rule}\n\n" }
str str
end end
@@ -296,18 +341,21 @@ module DecisionTree
prediction = r.predict(test) prediction = r.predict(test)
return prediction, r.accuracy unless prediction.nil? return prediction, r.accuracy unless prediction.nil?
end end
return @default, 0.0 [@default, 0.0]
end end
end end
class Bagging class Bagging
attr_accessor :classifiers attr_accessor :classifiers
def initialize(attributes, data, default, type) def initialize(attributes, data, default, type)
@classifiers, @type = [], type @classifiers = []
@data, @attributes, @default = data, attributes, default @type = type
@data = data
@attributes = attributes
@default = default
end end
def train(data=@data, attributes=@attributes, default=@default) def train(data = @data, attributes = @attributes, default = @default)
@classifiers = [] @classifiers = []
10.times { @classifiers << Ruleset.new(attributes, data, default, @type) } 10.times { @classifiers << Ruleset.new(attributes, data, default, @type) }
@classifiers.each do |c| @classifiers.each do |c|
@@ -322,8 +370,8 @@ module DecisionTree
predictions[p] += accuracy unless p.nil? predictions[p] += accuracy unless p.nil?
end end
return @default, 0.0 if predictions.empty? return @default, 0.0 if predictions.empty?
winner = predictions.sort_by { |k,v| -v}.first winner = predictions.sort_by { |_k, v| -v }.first
return winner[0], winner[1].to_f / @classifiers.size.to_f [winner[0], winner[1].to_f / @classifiers.size.to_f]
end end
end end
end end